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Abstract—Rubinstein et al. [1] presented the measurement 

of the electric field strength during lightning discharge with 

analogue integrators as amplifiers and their numerical 

correction of the time constant that is needed by means of 

stability of the integrator. We have extended his work by 

incorporating the antenna characteristic into the system 

equations. In this paper we focus  on the compensation of the 

integrator time constant (Eq. (13), [1]). We also defined the 

parameter ka which was introduced in Eq. (6) of [1]. Further, 

we analyzed and present results of that compensation method 

for time synchronized E-field measurements with two different 

integrators, so called E-slow and E-fast, recorded in Sao Paulo 

City on March 1st, 2014. In this context we discovered the 

importance of offset errors that exist. It will be discussed, why 

the offset of the system has a large influence while using the 

method of compensation and a simple approach for handling 

the offset will be presented. Additionally we show that this 

compensation method can be used to determine continuing 

currents by applying this method to fast E-fields. To verify this 

we used a sample of recorded current and fast E-field at 

Gaisberg Tower in Salzburg, Austria. The advantage of the 

compensation method for E-fast in comparison to an almost 

ideal integrator (E-slow) regarding the gain and quantization 

noise will be mentioned in the conclusion. The Appendix A 

contains the description of the system in the Laplace domain 

with useful simplifications, and shows the Bode plots. 

Keywords—lightning, E-fast, E-slow, time constant, 

compensation, convolution, offset error, continuing current, 
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I.  INTRODUCTION 

Lightning electromagnetic fields are often measured with 

so called flat plate antennas. The output of the flat plate 

antennas is integrated either with an active or passive circuit 

because the antenna itself measures the derivative of the 

electromagnetic field. Depending on the RC time constant 

of the integrator the resulting fields are called slow E-field 

or fast E-field. 

Recently Rubinstein et al. [1] presented a method to 

transfer electromagnetic fields measured with a RC time 

constant τ1 to a theoretical time constant τ2. This gives the 

possibility to compare electromagnetic fields measured with 

different integrators (different time constants). In the paper 

of Rubinstein et al. [1] the transfer only applies to different 

integrator time constants. In this paper we will extend the 

method described in [1] by the characteristics of the 

antenna. The characteristics of the antenna mainly influence 

the gain of the system. If two systems with different 

characteristics (antenna diameters and/or time constants) are 

considered, there are two possible ways to approach a 

comparison of the two systems.  

One possibility is to transfer the Laplace-domain system 

transfer function from the system with the faster time 

constant to the one with slower time constant (as it is done 

in Rubinstein et al. [1]). The waveform resulting from the 

convolution of the time-domain representation of this 

transfer function with the measured E-field of the fast 

system then should look similar to the waveform measured 

with the slow system. That makes the systems comparable. 

We call this method “E-field Transfer”. 

The other method is compensation, where for the system 

transfer function H(s) with 𝑉𝑜(𝑠) = 𝐸(𝑠) 𝐻(𝑠) the time-

domain representation of 
1

𝐻(𝑠)
 has to be determined. E(s) is 

the electric field strength which shall be measured with the 

antenna and Vo(s) is the output voltage of the integrator. In 

that case the convolution yields the unbiased E-field. The 

resulting waveforms of both systems should be identical. 

We call this method “E-field Compensation”. 

Lightning electromagnetic fields compensated for time 

constant are often used to determine the continuing current 

of a return stroke [2], [3], [4], [5]. Normally so called 

“slow” antennas (antennas with time constant greater than 

1 s) are used. The resulting field is then “compensated” for 

the time constant by a “graphical” method [6],  [7].  

It is the goal of this paper to show that so called fast E-

field data (measured with integrators with a small time 

constant, e.g. 0.5 ms) can also be used to determine 

continuing currents as with slow E-fields. The 

Compensation method described here is maybe even more 

accurate than “graphical convolution” of E-field data 

measured with “slow” antennas.  

 

In this paper we will first describe the different systems 

that are used to measure the electric field of the lightning 

discharge, show some results, and finally give a conclusion. 



Especially the compensation method considering the 

antenna characteristics and offset error treatment shall be 

presented. 

 

II. METHODS OF MEASUREMENT 

As already mentioned in the introduction it is possible to 

integrate the measured dE/dt of the antenna output with an 

active or passive circuit. 

The main characteristics are an amplifier-specific gain k 

and a time constant τ which makes the integrator stable. The 

following two graphics show a schematic of the two 

measurement arrangements: 

 

 
Fig. 1a: Antenna with integrator (active curcuit) 

 
Fig. 1b: Antenna without integrator (passive circuit) 

 

In Fig.1a and Fig.1b C_k represents the capacity of a 

calibration plate that is used for testing only. It is not used 

for the measurement of E-fields and therefore C_k is zero 

but it is necessary for the analytical calculation of the 

transfer function. C_ant is the capacity of the antenna. 

C_cable is the cable capacity which is more important for 

the system without integrator.  

The corresponding Laplace domain transfer function for 

the active integrator is: 

𝐻𝑖𝑛𝑡(𝑠) =
𝑉𝑜𝑢𝑡(𝑠)

𝐸(𝑠)
= 𝑠 

𝑑𝑎𝑛𝑡
1

𝜏𝑎𝑛𝑡
 +𝑠 

  
− 𝑘𝑖𝑛𝑡

1

𝜏𝑖𝑛𝑡
+𝑠

   (1a) 

where  𝑘𝑖𝑛𝑡 =
1

𝑅1𝐶2
 , 𝜏𝑎𝑛𝑡 = 𝑅1𝐶𝑎𝑛𝑡   and  𝜏𝑖𝑛𝑡 =   𝑅2𝐶2 

 

The indices ‘int’ and ‘ant’ stand for ‘integrator’ and 

‘antenna’. For the passive integrator the corresponding 

transfer function is: 

𝐻𝑛𝑖(𝑠) = 𝑑𝑎𝑛𝑡
𝐶𝑎𝑛𝑡

𝐶𝑎𝑛𝑡+ 𝐶𝑐𝑎𝑏𝑙𝑒

𝑠
1

𝑅 (𝐶𝑎𝑛𝑡 + 𝐶𝑐𝑎𝑏𝑙𝑒)
+𝑠

  (1b) 

where  
𝐶𝑎𝑛𝑡

𝐶𝑎𝑛𝑡 + 𝐶𝑐𝑎𝑏𝑙𝑒
= 𝑘𝑛𝑖  and  𝑅 (𝐶𝑎𝑛𝑡 +  𝐶𝑐𝑎𝑏𝑙𝑒) =  𝜏𝑛𝑖 

 

The index ‘ni’ stands for ‘no integrator’. 

 

In order to compensate the time constant and gain of the 

measured signal to get the physical E-field, Vout must be 

multiplied with Hint
−1(s) or Hni

−1(s), respectively. After 

simplification (see Appendix A) these can be written as: 

𝐻𝑒 𝑖𝑛𝑡
(𝑠) = 𝐻𝑖𝑛𝑡

−1(𝑠) =  
−1

𝑘𝑑𝑎𝑚𝑝 𝑘𝑖𝑛𝑡
 (

1

𝜏𝑖𝑛𝑡 

1

𝑠
+ 1) (2a) 

 

𝐻𝑒 𝑛𝑖
(𝑠) = 𝐻𝑛𝑖

−1(𝑠) =
1

𝑑𝑎𝑛𝑡 𝑘𝑛𝑖
(

1

𝜏𝑛𝑖

1

𝑠
+ 1)  (2b) 

 

The time domain functions for compensation (inverse 

Laplace transform of the Eq. (1a) Heint
 and Eq. (1b) Heni

) 

which are convolved with the measured field are given in 

Eq. (3a) and Eq. (3b). 

 

ℎ𝑒𝑖𝑛𝑡
(𝑡) =  

−1

𝑘𝑑𝑎𝑚𝑝 𝑘𝑖𝑛𝑡
 (

1

𝜏𝑖𝑛𝑡
𝜎(𝑡) + 𝛿(𝑡))   (3a) 

 

or simplified: ℎ𝑒𝑖𝑛𝑡
(𝑡) =  −

1

𝜀0 𝐴 𝑅2
𝜎(𝑡) −

𝐶2

𝜀0 𝐴
 𝛿(𝑡) 

 

ℎ𝑒𝑛𝑖
(𝑡) =

1

𝑑𝑎𝑛𝑡 𝑘𝑛𝑖
 (

1

𝜏𝑛𝑖
𝜎(𝑡) +  𝛿(𝑡))  (3b) 

 

or simplified: ℎ𝑒𝑛𝑖
(𝑡) =  

1

𝜀0 𝐴 𝑅
𝜎(𝑡) + (

1

𝑑𝑎𝑛𝑡
+

𝐶𝑐𝑎𝑏𝑙𝑒

𝜀0 𝐴
) 𝛿(𝑡), 

where σ(t) is the unit step, δ(t) is the dirac pulse, A is the 

surface area of the antenna, dant the distance of the antenna 

plate from the other electrode (parallel plate capacitor 

model) and 𝜀0 is the vacuum permittivity. 

 

These functions are convolved with the measured E-

fields. The convolution with the δ(t) part of the 

compensation function scales the high frequencies, which 

are well integrated by the system  (see Bode plot in 

Appendix). The convolution with the σ(t) part corrects the 

time constant of the integrator, which is used for the 

measurements. For 𝑅2 → ∞ one would have an ideal 

integrator and the compensation degenerates to a scaling 

(gain correction or calibration factor correction) of the 

waveform only. In section III we will discuss the influence 

of the gain correction (δ(t) part) for the high frequency 

content in the waveform of either the slow or the fast time 

constant integrator system. 

For the simplified form of Eq. (3a) and Eq. (3b) for 

example, it can be seen which influence the parameters have 

on the convolution result. Especially for the system with 

passive integrator (see [1], Fig. 3) the compensation 

function is similar in form but in contrast, the cable capacity 

is not a negligible parameter. It is crucial to know the cable 



capacity exactly, if that method of measurement is used. 
1

𝑑𝑎𝑛𝑡
 is small compared  to 

𝐶𝑐𝑎𝑏𝑙𝑒

𝜀0 𝐴
 and therefore negligible. 

Further, the simplified Eq. (3a) can be convolved with a 

measured signal Vo(t) resulting in  

 

𝑉𝑜
𝑁𝑒𝑤(𝑡) [= 𝐸(𝑡)] =  −

𝐶2

𝜀0𝐴
𝑉𝑜(𝑡) −

1

𝜀0 𝐴 𝑅2
 ∫ 𝑉𝑜(𝜅)𝑑𝜅

𝑡

0
     (4) 

 

Eq. (3a) and Eq. (4) can be compared to Eq. (13) from [1].  

The calibration factor ka from [1] can be found in Eq. (4) 

𝑘𝑎 =  −
1

𝑘𝑑𝑎𝑚𝑝𝑘𝑖𝑛𝑡
= −

𝐶2

𝜀0𝐴
. Calculation of 

𝑘𝑎

𝜏𝑖𝑛𝑡
 gives the 

second factor of Eq. (4). 

 

A potential problem of this method is any offset of the 

measured waveform. Even a minimal offset leads to 

noticeable deviations of the expected results, as the 

convolution sums up the offset values for the convolution 

interval. A method to circumvent this problem will be 

presented in section III. 

 

III. DATA ANALYSIS (EXAMPLES) 

The measurement of the data used in the following 

section was done in Sao Paulo City on March 1st, 2014. The 

lightning strike distance was 8 km. The equipment used is 

the same as described in [5]. 

The time constant of E-slow is 1700 ms and E-fast 

0.47 ms. The measurement was done with a 5 MS/s digitizer 

where 1s files are recorded continuously. The data are 

processed in Scilab (www.scilab.org) and the program can 

compensate data samples of up to 1s. 

 

Figs. 2 and Fig. 3 show the application of the above 

discussed derivations for the system with integrator. The 

measured E-fields of the ‘slow’ system and the ‘fast’ system 

and their corresponding spectrum are shown in Fig. 2a and 

Fig. 2b, respectively. The blue curve in Fig. 2b shows the 

spectrum of E-fast. The system with the slow time constant 

can measure the E-field down to quite low frequencies in 

comparison to the system with a faster time constant. This is 

obvious when the two spectra are compared. In Fig. 2b for 

E-slow (black curve) the gain for low frequencies is much 

higher than for E-fast (blue curve). Additionally Fig. 2b also 

shows the difference of the calibration factor (antenna gain). 

A multiplication with a constant means, that a constant is 

added in the logarithmic plot. This is the nearly constant 

vertical shift of the spectra for frequencies greater than 

about 500 Hz, where both systems should already work as 

‘ideal’ integrators. 

 

 
Fig. 2a: Uncompensated E-fields with slow (black) and fast (blue) 

integrator with respect to the axis scaling 

 
Fig. 2b: Spectrum of the uncompensated channels (E-slow: black, E-fast: 

blue) 

  

Further, in Fig. 3a the method of compensation has been 

applied to the E-fields of Fig. 2a from 600 ms to 1000 ms 

with an offset error correction (which is yet to be discussed). 

The result is a good agreement of the two waveforms, as it 

would be expected after compensation with Eq. (3a). The 

waveforms can now be interpreted as the actual physical 

development of the electric field strength, at the 

measurement site. Fig. 3b shows the result of the spectra 

after compensation. They are almost identical. The reason 

that the noise of the black curve (in this case from E-slow) 

still exists is the longer time constant of the integrator which 

causes a worse ‘noise filter’ than for a short time constant. 

This can be seen in Eq. (3a)). In the convolution, the 𝜎(𝑡)-

part of the equation is responsible for integration which 

suppresses high frequency parts, such as the (quantization) 

noise (Fig. 2b) above 10 kHz). Convolution with the 𝛿(𝑡)-

part on the other hand gives a scaled copy of the measured 

waveform as a result. These two are added to get the 

compensated waveform. Now, if  𝜏𝑖𝑛𝑡   is small, then the 

𝜎(𝑡)-part will dominate in comparison to the 𝛿(𝑡)-part and 

the noise from the measured E-field will have only small 

weight in the result of the compensation. If 𝜏𝑖𝑛𝑡   is high, the 

𝛿(𝑡)-part and accordingly the measured field will dominate 

in the result, hence the noise in the high frequency range is 

http://www.scilab.org/


hardly reduced. That behavior can be observed in the 

comparison of the spectra in Fig. 3b, where both plots 

represent the compensated waveforms. For the time domain, 

Fig. 6 gives a good example of what a high quantization 

noise of a low gain, slow time constant system, looks like in 

comparison to a compensated, fast time constant system. 

This means that from noisy recordings of E-fields with the 

fast antenna useful signals can be recovered very well. 

 The E-slow does generally not change its shape too 

noticeably, as it is already close to an ideal integrator. 

 

 
Fig. 3a: Compensated E-fields channels (E-slow: black, E-fast: blue 

 
Fig. 3b: Spectrum of the compensated E-fields (E-slow: black, E-fast: blue) 

 

 

One problem of the compensation with the convolution 

operation is that an offset of the system (which is due to 

offset voltages/currents of the OP-amplifier and may be 

assumed to be constant) causes a deviation of the expected 

result. Fig. 4 demonstrates what happens, if the offset error 

is not considered. The green curve is the compensated E-

fast. It drifts away, as the convolution sums up all the 

offsets over the 1s recording. If on the other hand, the 

convolution is done for a small period only (for example for 

the duration of several hundred μs up to 1ms), this effect 

will be hardly observable if the offset error is small. This is 

the case in [1] where the convolution was performed on a 

120 μs sample. 

Any existing offset can be determined in time periods of 

the current sample or previous samples, where no lightning 

activity is observed and therefore the graphs seem to have 

no rates of change. The mean value over a period of time 

will give an approximation of the offset error. This value is 

subtracted from the whole sample before compensation. 

Fig. 4 shows the compensated E-fast from Fig. 2a with and 

without offset error correction. In most cases, the offset 

error is almost constant over 1s. 

 

 
Fig. 4: Compensated E-fast shown in Fig. 2a without offset error correction 

(green) and compensated E-fast with offset correction (blue) 
 

 

As another test for the presented algorithm, we used 

three directly measured strokes with continuing current at 

the Gaisberg Tower in Austria and their corresponding time-

correlated E-fast measurements to reproduce the continuing 

current with the compensated fast E-fields using the method 

described in [2], [3], [4], [5]. The methods to calculate the 

continuing current require an assumption about the point 

charge height which was in our case assumed to be 7 km. 

Fig. 5 shows as example the measured and calculated 

continuing current for a return stroke of flash #561. 



 
Fig. 5: Measured and calculated continuing current for a return stroke of 

flash #561 to the Gaisberg tower. 

 

For all the three continuing currents the shape of the 

continuing current could be reproduced nicely. Nevertheless 

the assumed height of the charge with 7 km is in our 

experience too high. For realistic charge heights of about 4 

to 5 km the resulting current is too low. This difference 

could be related to the measurement very close to the 

Gaisberg tower (172 m) because in such close ranges the 

assumptions of the model to calculate the continuing 

currents from E-fields are maybe no longer valid. 

 

IV. CONCLUSION 

This work extends the concept of [1] and focusses on the 

method of compensation. It can be seen that the 

performance is very good even for low SNR. Presented 

compensation examples show, that a fast system can be 

compensated for its time constant with a result that is very 

good compared to a system that integrates closer to an ideal 

integrator. Once the correct parameters (e.g. time constants, 

gain, size of the antenna) of the system with a flat plate 

antenna and integrator are found, the compensation function 

can be adapted for any system similar to the one presented 

in that paper. Further we determined the constant ka of Eq. 

(13) in Rubinstein et al. [1] qualitatively. The offset error 

treatment is a crucial topic when performing the 

compensation over a long time or when the offset appears to 

be large. We presented a simple approach, how to determine 

this offset that the integrator produces due to the operational 

amplifier offset currents and voltage. A stable offset 

behavior of the system with slow rates of change is eligible. 

If there is a larger set of consecutive measurements 

available, it is advisable to check the seconds before the 

time of interest and to analyze the offset behavior. In many 

cases it is even possible to determine the offset error in one 

of the previous samples before lightning activity, where the 

signals look similar to Fig. 2a from 300 ms to 600 ms and 

then apply it on the sample of interest. 

As a further conclusion, it can be considered to measure 

and process the lightning E-fields only using integrators 

with fast time constants because of a better signal resolution 

that this setup provides. The signal resolution of the 

compensation result will therefore be good as well. For 

example, due to its coarse signal resolution, the slow system 

is not able to reproduce the radiation field peak of return 

strokes. An E-field compensated with the presented methods 

on the other hand, is able to retain that part of the signal (see 

Fig. 6). This means, that the waveform of a compensated E-

fast system would (ideally) contain information about return 

strokes with its fast varying parts, such as the radiation field 

peak, continuing currents, and slow variations of cloud 

charge all together. The numerical calculation tools as 

Matlab® or Scilab and others have a high performance on 

common computers that are used nowadays. Hence, the 

convolution can be done for many data files in reasonable 

time in order to gain further information for lightning 

research. 

 

 
Fig. 6: Black line: compensated E-slow. Blue line: compensated E-fast. 

The radiation peak is highlighted with the red arrow 

 

V. APPENDIX A: SYSTEM DESCRIPTION 

The Laplace-domain transfer function of the system with 

integrator given by Eq. (1a) can be divided into a 

differentiating part D(s): 

𝐷(𝑠) = 𝑠, 

 

an Antenna Damping K(s): 

 

𝐾(𝑠) =  
𝑑𝑎𝑛𝑡
1

𝑅1𝐶𝑎𝑛𝑡
 +𝑠 

 , 

and Integrator I(s): 

𝐼(𝑠) =  
− 

1

𝑅1𝐶2
1

𝑅2𝐶2
+𝑠

. 



E Vout

 

The goal of that separation is the following: Rubinstein et 

al. [1] derived the transfer method from the Laplace-domain 

transfer function of the integrator 
𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=  

−𝑘

𝑠+
1

𝜏𝑓

  with  

𝑘 =
1

𝑅1𝐶2
 and 𝜏𝑓 = 𝑅2𝐶2. It has exactly the same form as the 

term ‘Integrator I(s)’ and therefore makes Hint (Eq. (1a)) 

more descriptive in comparison to [1]. The two terms 

Differentiator D(s) (ideal differentiator which has a high 

pass characteristic: not feasible but useful for theoretical 

interpretation) and Antenna Damping K(s) (low pass filter 

with a very high border frequency) together form a band 

pass filter (see Bode plot in Fig. 7a) and represent the 

differentiating and damping behavior of the antenna with 

respect to geometrical factors of the plate antenna. The 

sense of the separation of D(s) and K(s) is on the one hand, 

that the K(s) simplifies to a damping constant kdamp (easily 

evaluated at 0 Hz giving 𝑘𝑑𝑎𝑚𝑝 = 𝑅1𝜀0𝐴) in the relevant 

frequency range (below sampling rate) and, on the other 

hand, when 𝐻𝑖𝑛𝑡
−1(𝑠) =  

1

𝑘𝑑𝑎𝑚𝑝𝐷(𝑠) 𝐼(𝑠) 
 is calculated, 

1

𝐷(𝑠) 
 cancels 

the s from the numerator of  
1

𝐼(𝑠)
. Then it is possible to get a 

time-domain function out of the inverse Laplace 

transformation without the need of time-discrete derivation, 

which makes the implementation easier. 

The Bode plot of the complete Laplace-domain transfer 

function Vout(𝑠) =  𝐻𝑖𝑛𝑡(𝑠) 𝐸(𝑠) is depicted in Fig. 7b. The 

red vertical line marks the frequency limit of measurement 

given by the sampling rate of the digitizer. In our case, the 

upper frequency bandwidth is determined by the sample rate 

of the system (5 MHz, vertical red line in Fig. 7). The most 

important part for the compensation is the frequency range 

from 0-1 kHz. 

 

Fig. 7a) Bode plot of individual transfer functions 

(red vertical line: sample rate) 

 

Fig. 7b) Bode plot of the complete system 

(red vertical line: sample rate) 

 

 

 

 

 

This block diagram is for interpretation only, to get insight 

that the system differentiates with respect to time (t), damps 

and integrates. The blocks are NOT free of feedback. Same 

parameters (resistors and capacities) can occur in more than 

one of the blocks. 

 

Parameters used for the bode plot shown in Fig. 7 are 

R1 = 51 Ω, R2 = 45.7 MΩ and C2 = 10 pF and antenna 

surface diameter d = 0.25 m. 
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