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1. Introduction 

The performance of a lightning location system (LLS) can vary with time as a result of changes in the 

location and performance of the sensors that comprise the network. The most common changes are (1) 

the addition or removal of sensors and (2) updated sensor technology. Changes in LLS performance can 

lead to significant changes in estimated lightning parameters (e.g. peak current and flash multiplicity 

statistics - Cummins and Bardo, 2004). Given these facts, it is important to be able to quantify these 

network changes in terms of the relative detection efficiency (DE) between various network configurations. 

 

A method to determine the overall relative stroke DE using peak current distributions has been presented 

by Cummins and Bardo [2004], and is described in detail in an upcoming CIGRE report by Task Force 

C4.404A. This approach has the limitation that any changes in network configuration that alter the 

individual stroke peak current estimates will introduce errors in the DE calculation. Further, it does not 

provide relative flash DE without additional calculations involving multiplicity measurements. 

 

The method described in this paper is not subject to the limitations noted above, although we show that it 

is sensitive to other LLS-derived parameters. The basis for this detection efficiency (DE) correction using 

multiplicity distributions is the work by Rubinstein [1995], where he shows the relation between flash and 

stroke DE.  

 

2. Theory 

2.1 Relation between Flash and Stroke DE 

Rubinstein [1995] shows that the detected flash multiplicity distribution Nf can be calculated from the 

“actual” flash multiplicity distribution a
fN  using 

a
f f

n=m

N (m) = F(n,m)N (n) m=1,2,...,
∞

∞�  (1) 

 

where F(n,m) is the probability to detect an n-stroke flash as m-stroke flash. With the assumption that 

individual stroke DE (defined as P) is independent of stroke order, F(n,m) can be calculated according to 

Eq. (2). 
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In this example F(n,m) is completely specified by the value of P. In our work we use two somewhat more 

general models for determining F(n,m):  

 

a)  Different but constant stroke DEs for different stroke orders are allowed.  

b) In addition to condition a), first-stroke DE is allowed to depend on multiplicity. 

 

For both cases we calculate F(n,m) using a recursive function (see Eq. 3) where p(i) is the DE of the ith 

stroke order and q(i)=1-p(i). If the real multiplicity (n) is increased, then F(n+1,m) may be calculated as 

 

F(n+1,m) = q(n+1) * F(n,m) + p(n+1) * F(n,m-1) (3) 
 

The first product term in Eq. 3 handles the case where the additional stroke is not detected but ”m” other 

strokes are, and the second term handles the case where the additional stroke is detected and one of the 

other “m” strokes is not detected. The two extreme terms of the recursive function F(n,0) and F(m,m) are 

defined in Eq. 4 and Eq. 5. 

F(n,0) = ∏
=

n

1i

q(i)  (4) 

F(m,m) = ∏
=

m

1i

p(i)  (5) 

 

Each column in the matrix F is related to a different multiplicity value. The mechanism to implement 

different first stroke DEs is to calculate all elements of matrix F related to a specific multiplicity using the 

related first stroke DE. 

 

2.2 Relative DE Correction 

Our new method to determine stroke DE corrections relies on describing the problem in terms of relative 

DEs. If we are interested in the DE of a LLS for a certain period with bad DE (Nflow) relative to a period with 

good DE (Nfhigh) we simply have to rewrite Eq.(1) as 

flow fhigh
n=m

N (m) = F(n,m)N (n) m=1,2,...,
∞

∞�  (6) 

 

In the case where one assumes only two different stroke DEs, one for first and one for subsequent strokes 

(pfirst and psub), then each F(n,m) term in Eq. (6) contains those two stroke DEs as unknowns. With a 
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nonlinear least square algorithm (see Appendix A) it is possible to determine those two unknowns (starting 

with an initial “guess”), and therefore determine estimates of the relative stroke DEs for the network. 

 
Once the stroke DEs and related F(n,m) are computed, the relative flash DE for the “low” condition can be 

calculated. This is done with Eq. 7 where the total number of flashes for the “low” condition (Numerator) is 

related to the total number of flashes for the “high” condition (Denominator).  

∞==
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= 1,2,...,m
(n)N

(n))Nm)F(n,
DE

1n
fhigh

1n mn
fhigh

flash

(
 (7) 

 

3. Test of the algorithm 

In order to verify the calculation of the relative DE, we have tested the algorithm in several ways: 

• We assumed a first-stroke DE, a subsequent-stroke DE and a multiplicity distribution Nfhigh, and used 

those values to calculate the multiplicity distribution Nflow using Eq. (6). We then used the two 

multiplicity distributions in the new algorithm to estimate the stroke DEs. This calculation procedure 

resulted in stroke DEs identical to the assumed ones. 

• We assumed a “real” multiplicity distribution and calculated distributions for two conditions of the 

network -- Nfhigh (with pfirst=0.9 and psub=0.7) and Nflow (with pfirst=0.75 and psub=0.5). We then used 

those two multiplicity distributions to calculate the relative DEs. Since we can directly compute the 

relative flash DE between both distributions Nfhigh and Nflow we were able to compare with the resulting 

flash DE obtained using the correction algorithm. Also in this case the algorithm converged to the 

correct value. 

• We tested the algorithm with real Austrian data to evaluate the effect of different maximum 

multiplicities for the distributions (up to a maximum of 20).  We found that there is no significant 

difference in the result if we ignore flashes with multiplicity greater than 14. Only the calculation time 

increases significantly. 

 

4. Results with real data 

We used data from the NLDN for this analysis because DE corrections (using the correction algorithm 

described in the CIGRE report from Task Force C4.404A) were already available. These existing 

corrections provide an overall stroke DE for the individual 2x2 degree regions shown in Figure 4.1. For our 

evaluation we have chosen a region close to Tucson (region 169) and a region in Florida (region 120). In 

those two regions we compare the performance of the NLDN between 1999 and 2004 (after the 2002-

2003 upgrade of the network). 
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Fig. 4.1: Red numbered regions will be used for comparison 

 

In the initial analysis we assumed that all stroke DEs are independent of multiplicity, and that first and 

subsequent strokes can have different (but constant) DE values. The results for the two regions and for 

different data sets are compared to the original DE correction made with the algorithm described in the 

CIGRE report and are given in Tables 1 and 2. Estimated DE values were obtained for three conditions, 

as described below. The overall stroke DE (first column) for the new method is computed using a variation 

of Eqs. (1) and (3) in Cummins and Bardo [2004]. The derivation is given in Appendix B (see Eq. B6).  

 

It can be seen that if all data are used (“All Data” condition in Tables 1-2) an unrealistically small first 

stroke DE (Region 169: 13%; Region 120: 10%) is obtained. This small first-stroke DE is unlikely, given 

that first strokes normally exhibit peak currents greater than subsequent strokes, which mean that first-

stroke DE should not be lower than subsequent stroke DE. 
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Table 1: Region 169 - first stroke DE is constant 

 Stroke DE 
[%] 

1st Stroke DE 
[%] 

Sub. Stroke DE 
[%] 

Flash DE  
[%] 

DE correction according to 
CIGRE 49 - - 58 

All data 43 13 63 50 
Flashes with first stroke peak 
current >10kA 50 31 62 63 

Flashes with first stroke peak 
current >15kA 53 40 60 71 

 

Table 2: Region 120 - first stroke DE is constant 

 Stroke DE 
[%] 

1st Stroke DE 
[%] 

Sub. Stroke DE 
[%] 

Flash DE  
[%] 

DE correction according to 
CIGRE 74 - - 88 

All data 53 10 74 57 
Flashes with first stroke peak 
current >10kA 72 90 66 96 

Flashes with first stroke peak 
current >15kA - - - - 

 

The cause of this small first-stroke DE could be a combination of several factors, e.g. misclassified cloud 

strokes, strokes with a bad position (outlier) that are not grouped with other strokes in the flash, flashes 

with multiplicity higher than 15 which are split in a flash with 15 strokes and a flash with the remaining 

strokes, and the assumption that first stroke DE is independent of multiplicity (low multiplicity is associated 

with low-current first strokes – Orville et al., 2002; Schulz et al., 2005). All of these possible causes will 

tend to produce excess low-peak-current single-stroke flashes which lead to low first stroke DEs. 

 

To test the influence of an excess number of single-stroke flashes, we explored the sensitivity of the 

estimated DE to small increases in the fraction of single-stroke flashes. We employed the second 

simulation test condition described in Section 3 to create “true” multiplicity distributions, and then the 

fraction of single-stroke flashes for the “high” DE condition was artificially increased.  When an additional 

1% of the flashes were forced to be single-stroke, the estimated first-stroke DE decreased from 83.8% to 

65.4% and the flash DE decreased from and 89.4% to 77.1%. When an additional 10% of the flashes were 

forced to be single-stroke, the first-stroke and flash DEs decreased further to 21.7% and 46.1%, 

respectively. Clearly first-stroke and flash DE estimates are very sensitive to errors in the fraction of 

single-stroke flashes. We note that the estimated subsequent stroke DE varied less than 1% from the 

“true” value for both simulated conditions.  

 

To test the influence of low-peak-current flashes on DE estimates derived from measured LLS data, we 

calculated the DEs for conditions where we excluded flashes with first-stroke peak current less than 10 kA 
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and less than 15 kA. As can be seen from Tables 1 and 2, both the first-stroke and flash DE values 

increase when flashes with low-peak-current first strokes are excluded. However, for region 169 the first-

stroke DE is still lower than the subsequent-stroke DE. Note also that the overall stroke DE values for 

flashes with first-stroke peak current greater than 10 kA are very similar to the overall stroke DE according 

to the method published at CIGRE. A correction for region 120 and first-stroke peak currents greater than 

15 kA was not possible because the algorithm did not converge to a reasonable result. 

 

In order to evaluate the importance of the dependence of first-stroke peak current on multiplicity, we have 

augmented the model to include this relationship. Prior studies indicate that there is a factor of about 2 

difference between the amplitude of a single-stroke flash and the amplitude of a first stroke in a flash with 

multiplicity 10, with a monotonic increase in peak current as a function of multiplicity [Orville et al., 2002; 

Schulz et al., 2005]. We assume a linear relationship between the first-stroke DE and the multiplicity. To 

explore this model, we also assumed a variety of specific values for the slope of this relationship, and then 

we estimated both the intercept of this first-stroke-DE:multiplicity relationship and the subsequent-stroke 

DE. We have tested the assumption with data from region 120 for different slopes and found the lowest 

squared-error value of the optimization for a slope of 0.05, yielding a factor of about 6 between a single 

stroke flash and a flash with multiplicity 10, as shown in Fig. 4.2. The squared-error value in this case is 

even lower than the squared-error value for the calculation without dependence of first-stroke DE on 

multiplicity.  
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Fig. 4.2: First stroke DE as a function of multiplicity (slope = 0.05). 

 

For this slope we computed a subsequent-stroke DE of 66% and a flash DE of 56%. It is interesting to 

note that the flash DE did not increase significantly. We also performed this calculation for the multiplicity 

distribution of flashes excluding first-stroke peak currents less than 10 kA. This condition had the smallest 
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squared-error when we employed a smaller slope, which is reasonable considering that the relation 

between first-stroke peak currents and multiplicity will be weaker when flashes with low-current first 

strokes are excluded. The results were similar to the values given in Table 2 for the >10 kA condition.  

 

5. Summary/Discussion 

In this paper we introduced a new method to determine relative changes in detection efficiency of a LLS 

based on multiplicity distributions. Contrary to earlier methods that employ peak current distributions, this 

new method provides direct estimates of first stroke DE, subsequent stroke DE and flash DE. We have 

shown that the model with the lowest squared-error (of those tested) is a model that allows for different 

first- and subsequent-stroke DEs, and also allows first stroke DE to depend on flash multiplicity. 

 

By applying this new method we implicitly assume that the underlying “true” multiplicity distribution is the 

same for both periods, and that no other factors contributed to the measured multiplicity values. It is 

further important to note that the stroke to flash grouping algorithm and its configuration should be the 

same for both periods.  

 

The new method seems to be quite sensitive to “additional” (erroneous) single-strokes flashes. These may 

occur as a result of misclassified cloud strokes, outliers, limits in the stroke-to-flash grouping algorithm, 

and limits to the model that relates the two multiplicity distribution to each other. It is clear from this work, 

as well as other work related to DE models, that modelling allows us to identify and evaluate anomalies in 

real-world lightning location data. 

 

Further investigations are necessary to fully understand the interaction between measurement errors and 

modelling errors. We also plan to explore the use of a weighting matrix in the optimization algorithm, 

allowing us to accommodate different errors associated with different multiplicity values. 
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Appendix A: Nonlinear Least Square Optimization 

The nonlinear Least Square analysis used to get the two unknown uses the following procedure:  

1) Estimate start values pfirst
0, psub

0. Written as Matrix the  

0
sub

0
first0

p
p

p =  (A1) 

 

2) Calculate matrix A, which is the gradient of Eq. (6) with respect to the “p” values: 

sub

flow

first

flow

sub

flow

first

flow

sub

flow

first

flow

dp
(m)dN

dp
(m)dN

.

.
dp

(2)dN

.
     .

dp
(2)dN

dp
(1)dN

dp
(1)dN

A =  (A2) 

 

3) Solve the following equation for the change in the “p” vector:  L= [ n
flowN - 1-n

flowN ] 

AT*A*p = AT*L (A3) 
 

4) Correct previous “p” vector for the nth iteration using pn = pn-1 + p. 

5) Iterate until | pn – pn-1 | < �, where � is sufficiently small so that the gradient approaches zero. 

 

Appendix B: The overall stroke DE 

We define M as the “true” average flash multiplicity. This value is defined as the total number of strokes in 

a dataset (ST), divided by the total number of flashes (FT): 

T

T

F
S

M =  (B1) 

Given an imperfect measurement system, not all strokes or flashes will be detected. We therefore define 

the measured average multiplicity (m) as the total number of detected strokes in a dataset divided by the 

total number of detected flashes. The detected quantities are simply the true quantities multiplied by their 

respected detection efficiency fractions (DEs and DEf), therefore: 

 

fT

sT

DEF
DES

m
⋅
⋅

=  (B2) 
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Given the definition of M in Eq. (B1), we can rewrite this equation as 

f

s

DE
DEM

m
⋅

=  (B3) 

An alternate expression for the total number of detected strokes is the fraction of detected first strokes 

plus the fraction of subsequent strokes.  This is accomplished by defining a first-stroke DE (DE1) and a 

subsequent-stroke DE (DEsu), and recognizing that the number of subsequent strokes in a dataset is 

simply the number of flashes multiplied by (M-1). Therefore the total number of strokes can be expressed 

as  

))1(()1( 11 suTsuTT DEMDEFDEMFDEF ⋅−+⋅=⋅−⋅+⋅  (B4) 
 

Substituting Eq. (B4) into Eq. (B2) yields 

f

su

DE
DEMDE

m
)1(1 −+

=  (B5) 

 

Note that  Eqs. (B3) and (B5) are different forms of the same equation. Equating the right-hand-side 

numerators of these equations and re-arranging terms yields Eq. B6. 

m
DEMDE

DE su
s

)1(1 −+
=  (B6) 
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