2019

Taszarek M., J. Allen, T. Púcik, P. Grönemeijer, B. Czernecki, L. Kolendowicz, K. Lagouvardos, V. Kotroni, W. Schulz:
A Climatology of Thunderstorms across Europe from a Synthesis of Multiple Data Sources

Journal of Climate, DOI: 10.1175/JCLI-D-18-0372.1, 2019

The climatology of (severe) thunderstorm days is investigated on a pan-European scale for the period of 1979–2017. For this purpose, sounding measurements, surface observations, lightning data from ZEUS (a European-wide lightning detection system) and European Cooperation for Lightning Detection (EUCLID), ERA-Interim, and severe weather reports are compared and their respective strengths and weaknesses are discussed. The research focuses on the annual cycles in thunderstorm activity and their spatial variability. According to all datasets thunderstorms are the most frequent in the central Mediterranean, the Alps, the Balkan Peninsula, and the Carpathians. Proxies for severe thunderstorm environments show similar patterns, but severe weather reports instead have their highest frequency over central Europe. Annual peak thunderstorm activity is in July and August over northern, eastern, and central Europe, contrasting with peaks in May and June over western and southeastern Europe. The Mediterranean, driven by the warm waters, has predominant activity in the fall (western part) and winter (eastern part) while the nearby Iberian Peninsula and eastern Turkey have peaks in April and May. Trend analysis of the mean annual number of days with thunderstorms since 1979 indicates an increase over the Alps and central, southeastern, and eastern Europe with a decrease over the southwest. Multiannual changes refer also to changes in the pattern of the annual cycle. Comparison of different data sources revealed that although lightning data provide the most objective sampling of thunderstorm activity, short operating periods and areas devoid of sensors limit their utility. In contrast, reanalysis complements these disadvantages to provide a longer climatology, but is prone to errors related to modeling thunderstorm occurrence and the numerical simulation itself.

No PDF Download

Download Link

Paul C., F. H. Heidler , W. Schulz:
Performance of the European Lightning Detection Network EUCLID in Case of Various Types of Current Pulses From Upward Lightning Measured at the Peissenberg Tower

IEEE Transactions on Electromagnetic Compatibility, DOI: 10.1109/TEMC.2019.2891898, 2019

In this paper, we present current pulses from upward lightning, which have been measured since 2011 at the new top structure of the Peissenberg Tower, Germany. The study comprises 38 negative and two positive flashes, which contained 199 current pulses. About 49 of them were return stroke current pulses, 133 of them were current pulses, which superimposed the initial continuous current (ICC-pulses), and 17 of them were M-component current pulses, which superimposed the continuing current of a preceding return stroke. The current pulses are used to evaluate the performance of the European lightning location system EUCLID. Fifty one (25.6%) out of the 199 current pulses were detected by EUCLID, 40 (81.6%) return stroke current pulses, and 11 (8.5%) ICC-pulses or M-component current pulses. The peak currents ranged from 0.1 to 40.8 kA. Two groups of current pulses could be identified. The first group is related to branches of nearby downward lightning which got in contact with the tower. Therefore, EUCLID reported much higher peak currents (more than 100%) compared to the peak currents measured at the Peissenberg Tower. The first group comprises the total of nine current pulses (six ICC-pulses, three return stroke current pulses). The second group of current pulses is related to upward lightning initiated from the top of the tower. The peak current inferred from EUCLID deviates much less from peak current measured at the Peissenberg Tower. The peak current was overestimated by about 20% by EUCLID. The second group comprises the total of 42 current pulses (4 ICC-pulses, 1 M-component current pulses, and 37 return stroke current pulses). The peak currents ranged from 3.1 to 40.8 kA, the geometric mean (GM) was 9.4 kA. About 30% of these events were misclassified as intra-cloud pulses by EUCLID. The GM of the location error was 161 m for all events, and 132 m considering only the return stroke current pulses.

No PDF Download

Download Link

OVE uses cookies to provide you with the best possible service. By using our website, you consent to the use of cookies. Read more about cookies here.